CATARO: Proyecto Coordinado para a evaluación de tecnologías y arquitecturas de redes ópticas

The purpose of the CATARO project (a coordinated project for the evaluation o optical networks technologies and architectures) is to continue the studies carried out in two previous projects, namely TRIPODE (IP traffic transport over Optical networks: Designing and Evaluation, Ref.: TIC2002-04344-C02) and CARISMA (Connection and access to RedIRIS2 through a multi-channel optical ring, CICYT TIC2000-0304-P4-04). Thereby, the CATARO project consists of two subprojects, namely SENDERO (Designing and Evaluation of optical network architectures Ref.: TEC2005-08051-C3-01) and RINGING (GMPLS/ASON Intelligent Network: Integration of reconfigurable nodes, Ref.: TEC2005-08051-C3-02), which are summarized next.

The SENDERO subproject basically concerns the analysis aspects, design and performance evaluation of the network architectures based on optical technology having as objectives, on the one hand completing the subjects opened after finalization the TRIPODE project and on the other hand opening new topics, which interest is growing. Particularly, with respect to optical network architectures that could potentially be implemented in a short-term, it will continue working on control plane and routing algorithms for ASON (Automatically Switched Optical Networks) as well as will begin new topics like provisioning of new telecommunication services, which is required by emerging applications like “Grid Computing” and “Storage Area Networks and inter-working the RPR (Resilience Packet Rings) with ASON networks. Regarding mediumterm architectures, the subproject will continue the subject of metropolitan area optical networks taking into consideration possible implementations of the first prototypes in public infrastructures and evaluation of the architectures more sophisticated. However, the principal objective of this block will be centred on the optical burst switching networks (OBS), the architecture which is gaining interest thanks to its both foreseeable strong benefits and future technological affordability. Finally, in the context of long-term network architectures, the subproject will continue the study on OPS (Optical Packet Switching) nodes functionality with a focus on QoS provisioning, moreover it will approach a study in scope of the whole network, particularly, focusing on a design of the control plane for OMPLS (Optical MPLS) networks, as well as in evaluation of the routing algorithms. At last, we will begin a new topic that consists of an adaptation the technique of optical packets commutation for designing the architectures for high performance computers.

The RINGING subproject concerns the design and building of a reconfigurable optical node with an advanced design, and its further integration into a real network to develop a field trial. The main objective of this subproject is the integration of reconfigurable optical nodes in the GMPL/ASON network, which has been obtained as a result of the CARISMA project. Thanks to the participation in TRIPODE, CARISMA, and FIRM (Field trial with Integrated ROADMs and GMPLS compliance, the CELTIC-EUREKA-2004 project, projects, the know-how necessary for the implementation of the reconfigurable optical nodes is ready. The subproject is divided in two main blocks. The first one will be dedicated to building reconfigurable optical nodes, while in the other, the aspects of the integration of these nodes in an optical network which was constructed during the CARISMA project, will be treated. Introduction of the traffic engineering (TE) techniques into GMPLS/ASON networks, which will result in a network able to provide optical virtual private networks (OVPN) as well as suitable for working in a GRID environment of great importance in the next future, should be highlighted among the most important general objectives of this subproject. For the development of these last objectives also the participation in PROMISE (Provisioning and monitoring of optical services, CELTIC-EUREKA-2004 project) project will be useful.

1/2006 - 12/2008

Advanced Broadband Communications Center (CCABA), Depts. of Computer Architecture (AC) and Signal Theory and Communications (TSC), UPC.

Contract number