Skip to content

NAME: Gestión de la movilidad basada en la separación de identificadores - Naming and Addressing for Mobility management in ubiquitous Environments

You are here: Home / Past Projects / NAME: Gestión de la movilidad basada en la separación de identificadores - Naming and Addressing for Mobility management in ubiquitous Environments

NAME: Gestión de la movilidad basada en la separación de identificadores - Naming and Addressing for Mobility management in ubiquitous Environments

Description
Mobility is unnatural to today’s Internet architecture, primarily due to overloaded IP address semantics. Several schemes address this issue by decoupling the location of an endpoint from its identity. Such location/identity separation inherently provides services fundamental to the future Internet including seamless mobility, multihoming, and traffic engineering. Of the various location/identity separation schemes, the Location/ID Separation Protocol (LISP) (proposed by Cisco Systems Inc., and under standardization at IETF) has a unique position: LISP is incrementally deployable, it does not require changes to transport/application implementations, and it is already under active deployment (see http://www.lisp4.net). Basically, LISP proposes two different types of addresses: Endpoint Identifiers (EIDs) and Routing Locators (RLOCs). EIDs identify hosts, and are assigned independently of the network topology while RLOCs identify network attachment points, and are used for routing. This allows EIDs to remain unchanged even if a topological change, such as a handover, occurs. Thus, LISP’s innate support for location/identity separation makes LISP well suited for mobility. Indeed, the LISP mobility protocol (LISP-MN) has been recently proposed. LISP-MN offers many advantages in front of traditional mobility schemes such as Mobile IP. On the one hand LISP´s separation of control and data planes avoids mobility provider lock-in, and LISP-MN clients can freely roam among providers (usually ISPs). On the other hand, LISP-MN provides native support for multihoming, load balancing and route optimization, this are important aspects for the future mobile clients. However and traditionally, the Internet architecture has evolved independently of cellular networks (3GPP). Nowadays these cellular networks are converging to an all-IP network, and their new architecture must be gracefully accommodated in the future Internet architecture. This imposes a set of important challenges. In this context, we expect that LISP-MN will play a crucial role. LISP-MN provides a higher level of mobility (at the network layer) and mobile clients can freely roam across providers. The main objectives of the NAME project are (i) Research coherent architectures for the future converged cellular and Internet networks and (ii) Research and design advanced services such as content distribution and live streaming for LISP-MN.

Duration
36 months

Participants
CTTC SYMBIOSYS TEC2011-29700-C02-01 - UPC NAME TEC2011-29700-C02-02 - EPO: CISCO, CESCA

Contract number
TEC2011-29700-C02-02

More Info
Project Website: http://www.cba.upc.edu/name