Skip to content

NOBEL II: Next Generation Optical Networks for Broadband European Leadership - phase 2

You are here: Home / Past Projects / NOBEL II: Next Generation Optical Networks for Broadband European Leadership - phase 2

NOBEL II: Next Generation Optical Networks for Broadband European Leadership - phase 2

Leveraging all results obtained in phase 1, NOBEL phase 2 will consider the medium-term, long-term and extended long-term scenarios, focusing in particular on the last two, and will face with two major challenges. The first is the evolution of the data plane technology in order to reach an 'optimum techno-economic balance' between optical/electrical and circuit/packet routing and switching. The second is the evolution of the network control plane towards an unified control plane that is able of improving the seamless end-to-end network service capabilities in a flexible and scalable way. Moreover, NOBEL phase 2 will consider the opportunity deriving from the convergence of fixed and mobile services, analysing its impact on the metro and core parts of the network. To achieve the overall goals of NOBEL phase 2, the following main objectives were identified.
# Definition and demonstration of architectures for providing packet switched and circuit switched connections in an integrated network scenario. Identification of requirements and solutions for the core and metro networks supporting both fixed and mobile services.
# Study and evaluation of multi-layer traffic engineering and resilience schemes in different service and business scenarios to achieve cost-effective solutions. Effective Multilayer Traffic Engineering (MTE) solutions for the advanced network architectures developed in WP1 will be proposed by enhancing, updating and validating the concepts and solutions identified in NOBEL.
# Development of multilayer traffic models of new services and their use in traffic generators for the experimental activities carried out in WP1 and WP5 as well as for simulations in WP2 and WP3.
# Elaboration of new enhanced resilience mechanisms and evaluation of new case studies for medium term multi-layer scenarios and long-term multi-vendor networks (as defined in NOBEL), with integrated multi-layer concept.
# Techno-economic and cost-effectiveness analysis of network solutions and services.
# Identification, specification and assessment of NOBEL (phase 1) extended long term network architectures, concepts and solutions for the evolution of optical broadband core and metro networks to adapt the network and node structures to the dominating burst/packet type of data traffic (e.g. IPv4, IPv6 etc.) in order to provide the required flexibility, scalability, quality and reliability in the most effective way.
# Identification and development of enhanced, innovative solutions for the Control Plane (CP) and Management Plane (MP) and their collaboration in long term and extended long term network architectures, for end-to-end broadband services, with focus on CP issues in GMPLS networks.
# Evaluation of robust transport technologies and components by theoretical studies, technology assessments, and experiments. Implementation and verification of advanced network and node functionalities in dedicated laboratory experiments.

24 months

# Telecom Italia - TI - Italy # Alcatel-Lucent Deutschland AG (formerly Alcatel SEL AG) # Alcatel-Lucent France (formerly Alcatel CIT) # Alcatel-Lucent Italia S.p.A. (formerly Alcatel Italia S.p.A. ) # British Telecommunications PLC - BT - UK # Ericsson AB - ERICSSON - Sweden # Lucent Technologies Network Systems GmbH - LUCENT GMBH - Germany has merged with Alcatel-Lucent Deutschland AG # Alcatel-Lucent Nederland BV (formerly Lucent Technologies Nederland BV ) # Ericsson GmbH - EDD - Germany # Coreoptics GmbH - COREOPTICS - Germany # Pirelli Labs S.p.A. - PIR - Italy # Nokia Siemens Networks GmbH (formerly Siemens Aktiengesellschaft) # Telefonica Investigación y Desarrollo Sociedad Anónima Unipersonal - TELEFONICA I+D - Spain # Deutsche Telecom AG - DTAG - Germany # ACREO AB - ACREO - Sweden # Akademia Gorniczo-Hutnicza Im. Stanislawa Staszica W Krakowie - AGH - Poland # CISCO Systems International BV - CISCO - Netherlands # Centre Tecnologic de Telecomunicacions de Catalunya - CTTC - Spain # France Telecom - FT - France # Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. - FRAUNHOFER - Germany # Interdisciplinar Instituut Voor Breedbandtecchnologie VZW - IBBT - Belgium # Institute of Communications and Computer Systems - ICCS - Greece # CoreCom - Consorzio Ricerche Elaborazione Commutazione Ottica Milano - CORECOM - Italy # Scuola Superiore di Studi Universitari e di Perfezionamento Sant'Anna - SSSA - Italy # Telenor ASA - TELENOR - Norway # University College of London - UCL - UK # Budapest University of Technology and Economics - BME - Hungary # University OF Stuttgart - USTIKR - Germany # Universitat Politècnica de Catalunya - UPC - Spain # Università degli studi di Padova - UNIPD - Italy # Istituto Nazionale di Fisica Nucleare - INFN - Italy # Politecnico di Torino - POLITO - Italy

Contract number

More Info
Project Website: